本文目录一览:
- 1、维修数控机床的六种方法
- 2、想学数控机床维修(电气部分),应该怎么学呢?应该了解哪些方面的知识?
- 3、怎么学数控机床维修方面的技术
- 4、数控机床维修的基本功
- 5、学习数控机床维修技术需要哪些基础
- 6、没基础怎么学数控机床维修怎么学
维修数控机床的六种方法
维修数控机床的六种方法
数控机床技术复杂且种类繁多,维修问题是影响数控机床有效利用的首要问题。下面,我为大家讲讲维修数控机床的方法,希望对大家有所帮助!
诊断多种故障综合症
下面通过CVT035型晶体管直流驱动器的典型实例,说明多种故障综合症的诊断方法。该故障伺服板,经初步检查看出,电路板外观很脏,输出级烧损严重,可见用户的维护保养比较欠缺,处理这种故障,应该首先清除脏物,修复输出级,切忌贸然通电,否则可能引发短路,扩大故障面。例如铁粉灰尘的导电短路,输出级开关管击穿对前级和电源的短路等等。经上述处理后,通电检查又发现如下故障:(1)“欠压”红灯有时闪亮(“READY”绿灯闪灭);(2)电机不转;(3)开关电源(±15V)变压器Tl和电源开关管V69异常发烫。
这是一例典型的综合症,而且故障之间可能存在某种因果关系,所以处理故障需要顺序进行,否则可能事倍功半,甚至引发故障面扩大。我们通过分析,做出如下维修排序:开关电源一“欠压”灯——电机运转。首先检查电源板,通过测量主回路150V直流电压和断开±15V负载的检查后,得知故障在开关电源板内部,在检查电源板中发现10V稳压管V32的电压只有9.5V,由此检查下去,找到故障原因:V32的限流电阻Rl85阻值变大。更换Rl85后,±15V电源板和“欠压”灯等均恢复正常,但电机仍不转。可见,以上灯闪和元件发烫均由Rl85变值引起,电机不转则另有原因。按通常的检查方法,可以逐级检测,但由于经验的缘故,我们只做简单的变换转向试验,结果发现反向运转正常,所以很快查出故障原因:换向电路的集成块N5(TL084)失效,更换N5后,一切正常。
CT4一OS3型查频器的一例特殊故障
CT4一OS3型变频器常用于YBM90和MK5oo加工中心的刀库驱动。在维修中,我们多次碰到该变频器时好时坏的缺相故障,并且测得缺相电压只有60至200V(正常为400V)。由于这是一种时好时坏的软故障,诊断查寻困难。
但是,我们发现该变频器这种故障的.多数原因是脉冲隔离级问题——振荡不稳定。这种故障现象,用示波器检查,很难发现“波形丢失”,但一般都有三组脉冲幅值不相等,甚至差异软大的现象。其实,仔细分析一下隔离级电路的特点就能看出问题,这是一个比较特殊的间歇振荡器,仅用二只三级管,分别做振荡管和振荡器电源开关。由于采用单管振荡,而且振荡电路串入限流电阻和二只三极管,加上变压器输出负载,所以振荡电路损耗大,增益低,容易造成电路偶发性停振和脉冲幅值不足的毛病,即产生时好时坏的电机缺相故障。从以上分析可以看出,这种电路对脉冲变压器Q值和三极管β值要求严格,用户维修时,可以采用如下措施得到弥补:(1)选用高β(120至180)振荡管;(2)适当减少限流电阻阻值,即在51Ω电阻上并接100一270Ω。
PC接口法
由于数控机床各单元(除驱动器外)与数控系统之间都是通过PC接口(1/O)实现信号的传递和控制,因此,许多故障都会通过PC接口信号反映出来,我们可以通过查阅PC机床侧的1/O信号诊断各种复杂的机床故障或判别故障在数控系统还是在机床电气。其方法很简单,即要求熟悉全部PC(机床侧)接口信号的现行状态和正常状态(或制成一张表格),诊断时,通过对全部PC(机床侧)接口信号的现行状态和正常状态逐一查看比对,找出有故障的接口信号,然后根据信号的外部逻辑关系,查出故障原因。当你熟悉了PC接口信号后,应用这种PC接口比对法,非常简便快快捷,而且避免了分板复杂的梯形图程序。
西门子3GG系统数据异常的恢复
瑞士STUDER S45一6磨床配备西门子3GG系统,为双NC双PLC结构,该系统具有很强的自诊断功能,发生故障时,可以借助屏幕提示,快速诊断修复故障。但是如果发生系统无法启动,并且PLC处于停止状态,屏幕不亮,那么系统的自诊断功能将无法发挥作用,导致诊断困难。发生这种故障的原因比较多,如果电池电压低于2.7V,必须更换电池;如果NC或PLC硬件损坏,需要更换电路板;如果机床的24V电源低于21V,需要检查电源电路和负载。
但是我们碰到更多的故障原因并不是硬件故障,而是机床数据异常这类软故障。其原因比较复杂,如电网干扰、电磁波干扰、电池失效、操作失误等均有可能造成机床数据的丢失或混乱,以致系统无法启动。
象这类软故障我们可以采用全清恢复法使系统恢复运行。3GG系统的全清步骤如下:
(1) 机床数据、用户程序、设定数据和背景存贮器的清除;
(2) 3GG系统的初始化;
(3) PLc清零;
(4) 恢复被清除的全部数据、程序。一般需要设定波特率,调出128KB内存,然后,通过磁盘等媒体输入数据、程序。
(5) 试验并检查伺服系统的全部KV系数。
(6) 完成这些步骤后,系统恢复正常。
采用电阻比对法诊断电源负载短路
故障障实例:FANUC一BESK伺服驱动板十15V负载软击穿烧保险丝。我们维修时,通过初步检查判定故障原因是负载局部短路,并且用数字表测得十15V对“地”电阻,正常板为1.3KΩ 故障板为300Ω。因为通电好烧保险丝,根本无法通电检查,所以只能做电阻测量或拆元件检查。
但是,由于该伺服板的十15V电源与其负载(24只集成元件)的印刷电路成放射型结构,所以,电阻测量时无法做电路切割分离,并且由于元件多且为直接焊装,也不可能逐一拆卸检查。维修的实际操作十分困难,即使故障解决了,也往往弄得电路板伤痕累累。处理这种既不能做电路切割分离或元件拆卸也无法通电检查的故障,我们采用电阻比对法检查很方便。诊断检查时,不切割电路也不焊脱元件,而是直接测量十15V端与各集成元件的有关管脚问的电阻值,同时将故障板与正常板做对应值比较,即可查出故障。处理以上故障时,考虑到元件管脚多,所以首先分析厚膜块内部电路(图中已标出)和集成块管脚功能图,然后从中筛选出若干主要的测试点,做电阻测量。当测量到Q7时,发现其3脚( + 15V)对14脚(输出)电阻为150Ω(正常为6KΩ ,怀疑Q7(LM339)有问题,更换Q7后,伺服板恢复正常,说明Q7管脚间阻值异常系内部软击穿,从而引起电源短路。
快速过程的分步模拟法
有些控制过程,如步进电机的自动升降速过程,直流调速器的停车制动过程,只有零点几秒的瞬间时间。查寻这种快速过程的电路故障,显然无法采用一般仪表进行故障跟踪检测,所以故障诊断比较困难。下面通过故障实例一5V型直流可控硅主驱动停车时间太长的故障,介绍我们采用的特殊方法一分步模拟法。
经过对故障板的初步检查,判断故障原因在V5主驱动器制动电路。该制动控制逻辑复杂,涉及电路多,诊断故障决非举手之劳,而且由于制动过程短,无法测量,所以我们采用分步模拟法进行诊断检查。由电路原理得知制动过程如下:(1)本桥逆变,释放能量;(2)自动换桥,再生制动;(3)再次换桥,电路复原。
为了分步测量的需要,以速度指令、速度反馈和电流反馈为设定量,将以上过程细分为八个步骤(列成一张表),然后逐步改变相应设定量,检测有关电路信号,对照电路逻辑,查出故障。我们做分步测试进行到第二步(即速度指令由1变0)时,发现“a后移”和“积分停止”均为高电平,按电路逻辑,应为低电平,据此查对电路,很快找出A2板中与非门Dl06(型号:FZHI01)有问题,更换后,故障排除。
;
想学数控机床维修(电气部分),应该怎么学呢?应该了解哪些方面的知识?
6月1日 23:16 世界机床拥有量约1400万台,内数控机床约140万台,占10%。其中MC拥有量约40万台,约占数控机床的28.5%,仅次于数控车床(约50万台,占35.7%)。世界机床产量约100万台,内数控机床约25万台,占25%。MC约7万台,占数控机床产量之28%,仅次于数控车床(8万台,占32%)。由于世界市场对MC需求增加,MC的产量在不断增多(2003年日本、台湾省产量分别为10290、16794台)。
从1992~2004年12年间,数控机床产量和消费量的平均年增长率分别为17.5%和17.7%,而1998~2004年6年间的年平均增长率却分别达39.3%和34.9%。本世纪数控机床进口量占消费量的比例,也由上个世纪90年代的55%降至45%左右。 2004年,中国市场对MC的需求猛增,消费量达9543台,已跃居近年来的世界高位;仅次于美国2001年的MC消费量(约11500台)。
1998~2004年中国MC的产量、进出口量、消费量中,MC的消费量猛增。2002~2004年比上年分别增54.8%、51.4%、52.9%。2004年消费9543台,为当年产量1800台(估计,无数字报道)的5.3倍。在1998~2004年6年间,MC的消费量之和为27674台,是产量之和5766台的4.8倍,供不应需、形势严峻。在2002~2004年三年间国产MC的占有率(产004年中国MC进口量达8095台,已跃居世界首位(2001年美、德、日进口量分别为5183、4762、135台)。
2003、2004年进口台数分别比上年增54.6%、57.7%。进口金额分别比上年增74.6%、51.3%。另外,2004年MC进口8095台,为进口数控金属切削机床3.01万台之27%,超过1/4。在金额上,为34.3亿美元之27.8%,也超过1/4。2004年MC的进口额9.55亿美元,超过了数控特种加工机床(9.29亿美元)和数控车床(4.56亿美元),居首位。
量/消费量)分别为24.3%、20.8%、18.9%,在逐渐下降。
2002~2004年各种MC进口的台数、金额,量大面广的立式MC为数最多,其次为卧式、龙门式。2004年进口立式MC 6004台,占MC进口总数8095台之74%。其进口金额4.42亿美元,占MC进口总金额9.55亿美元之46%。
2003、2004年中国MC进口的国家(地区)。以台数计,依次为:台湾省(2048、3517台)、日本(1821、2791台)、韩国(517、765台)等。以平均单价计,2004年,一般的在3.7~13.7万美元之间,而德国、意大利、瑞士的单价较高,为30.9~49.9万美元,属高性能。2004年从德、意、瑞士进口的MC共485台,占MC总进口量8095台之6%。金额共2.13亿美元,占9.55亿美元之22.3%。大致表明:进口的MC,大部分为中档,少数属高档。
中国MC大量进口,而出口量很少,从上述表1中可明显看出,进口量迅速上升,而出口量则徘徊不前。2004年MC进口8095台,是出口量352台之23倍。
2003~2004年中国MC的出口量、金额。2004年出口352台,比2003年140台增151%。金额391万美元,比2003年485万美元减少24%,每台平均金额2004年为1.11万美元,比2003年3.46万美元减少112%。可能基本上是光机出口。为今后努力扩大出口,解决存在问题,有必要进一步分析研究出口单价下降的问题。
市场占有率,2004年中国MC产量1800台、消费9543台,台数占有率(产量/消费量)为18.9%。中国MC产值约1.26亿美元(为估计、无报道、产量1800台,每台按7万美元计),消费额10.77亿美元,金额市场占有率为11.7%
怎么学数控机床维修方面的技术
数控机床维修课程分为两大类:电气方向和机械方向,电气方向包括:PLC、变频器等,机械方向包括:数控机床原理,数控机床的安装、调试、维修、改造等课程。数控机床一般由输入输出设备、CNC装置、伺服单元、驱动装置、可编程控制器、PLC及电气控制装置、辅助装置、测量机床本体、测量装置组成。数控机床维修工作包括:设备管理、设备保养和故障维修。
一、数控维修概述
维修内容和维修要求,故障的分类,故障检测,故障分析,故障诊断等,详见数控设备及其信号的特殊性;维修内容与现场维修要求;维修档案与维修的三个阶段;故障分类与主要故障;检测的难点;
二、数控机床的安装调试与维修管理
三、数控机床的故障诊断与分析方法
(一)数控系统故障诊断技术
(二)数控系统故障诊断与排除的一般方法
数控系统故障诊断与排除的一般方法方法有以下12种:1故障诊断的基本处理原则;2各类框图;3孤立体与独立单元分析法;观察检查法;4自诊断功能法;5PLC程序法;6接口信号分析法;7信号交换检查法;8修改状态识别法;9参数检查法;10功能程序测试法;11试探交换法;12测量比较法等。
(三)数控机床常见故障的诊断与排除
1.排除干扰
2.机床数控系统软件故障分析
3.数控机床控制系统硬件故障分析
4.PLC控制故障分析
5.机床本体上电气故障分析
6.伺服驱动系统故障分析
7.主轴控制系统故障分析
8.监测系统与反馈环节故障分析
9.典型的CNC系统的故障分析
(四)数控机床监视技术与常见机械故障的诊断与排除 (在实训中介绍)
数控机床维修的基本功
数控机床维修的基本功
在我国,随着现代制造业的发展,数控机床的应用越来越普遍,社会急需数控机床维修高级技能人才。要学好数控机床维修,首先要熟悉数控系统及其接口与连接,这是数控机床维修的基本功。
数控机床根据功能和性能的要求配置不同的数控系统。数控系统是数控机床的核心,包括数控装置、进给伺服驱动单元、主轴驱动单元、可编程控制器、显示装置及操作面板、通信装置和辅助控制装置。目前,我国数控机床行业占据主导地位的有日本的FANUC(发那科)、德国的SIEMENS(西门子)、我国的华中等公司的数控系统及相关产品。
数控装置的接口是数控装置与数控系统的功能部件(主轴模块、进给伺服模块、PLC模块等)和机床进行信息传递、交换和控制的端口。接口在数控系统中占有重要的位置。不同功能模块与数控系统相连接,不能直接连接,必须通过接口电路连接起来。无论是哪种数控系统,数控装置常用接口一般可以分为五大类:电源接口、通信接口、伺服控制接口、主轴控制接口和输入输出接口。
本文以FANUC-0i Mate C数控系统和华中HNC-21数控系统为例,结合作者多年的实际维修经验,介绍数控装置的常用接口及其应用,以便于读者掌握典型数控系统的组成及功能连接,为数控系统的维修奠定良好的基础。
二、FANUC-0i Mate C数控系统接口
自1965年以来,FANUC一直致力于工厂自动化产品CNC的开发。公司采用了先进的开发手段及先进的生产制造设备,为全世界的机械工业提供了高性能、高可靠性的众多的系列数控产品和智能机械。图1为FANUC-0i Mate C系统单元接口图,图2为FANUC-0i Mate C数控系统连接图。
(一)电源接口
CP1:系统直流24V.输入电源接I21,一般与机床侧的DC24V稳压电源连接。
(二)通信接口
JD36A:RS-232-C串行通信接口(0、1通道)。
JD36B:RS-232-C串行通信接口(2通道)。
(三)伺服控制接口
CPl0A:系统伺服高速串行通信FSSB接口(光缆),与伺服放大器的CP10B连接。CA69:伺服检测板接口,此接口维修时使用。
(四)主轴控制接口
JA7A:串行主轴/主轴位置编码器信号接口。当主轴为串行主轴时,与主轴放大器的JA7B连接,实现主轴模块与C C系统的信息传递;当主轴为模拟量主轴时,该接口又是主轴位置编码器的主轴位置反馈信号接口。
JA40:模拟量主轴的速度信号接口,CNC系统输出的速度信号(0~10V)与变频器的模拟量频率设定端相连接。
(五)输入输出接口
JD44A:外接的`I/O卡或I/O模块信号接口(I/O Link控制)。
CA55:系统MDI键盘信号接口。
CN2:系统操作软键信号接口。
三、华中HNC-21数控系统接口
华中世纪星HNC-21系列数控单元(HNC-21T、HNC-21M)采用先进的开放式体系结构,内置嵌入式工业PC机,配置7.5英寸彩色液晶显示屏和通用工程面板,集成进给轴接口、主轴接口、手持单元接口、内嵌式PIC接口于一体,支持硬盘、电子盘等程序存储方式以及软驱、DNC、以太网等程序交换功能,具有低价格、高性能、配置灵活、结构紧凑、易于使用、可靠性高的特点,主要应用于小型车、 铣 加工中心。
(一)电源接口
XS1:电源接口。管脚1、5 为AC24V1
AC2472,交流24V 电源,也可用DC24V 电源供电。管脚2、4为+24V、24VG,直流24V 电源。管脚6为PE,安全地。
调试数控机床时,数控系统上电前,调试人员需要测试管脚1、5或管脚2、4的电源电压,确认是否为DC24V或AC24V。另外,当我们怀疑数控系统输入电源类故障时,也需要进行此操作。
(二)通信接口
1.XS2:外接PC键盘接口。
2.XS3:以太网接口。
3.XS4:软驱接口。
4.XS5:RS232接口。串行数据通信时使用,运用此接口可与PC机进行数据交换,完成参数、PLC、程序等的上传下载。
(三)伺服控制接口
1.XS30~XS33:模拟式、脉冲式、步进式进给轴控制接口。管脚14、7、15、8分别为CP+、CP-DIR+ 、DIR-
步进式进给轴控制时,CP+、CP-代表输出指令脉冲,脉冲的频率和数量控制步进电机的转速和转角大小;DIR+、DIR一代表输出指令方向,控制步进电机的转向。步进式进给轴控制属开环系统,无反馈。脉冲式进给轴控制时,脉冲指令接口有3种类型:单脉冲(又称脉冲+方向)方式、正交脉冲(又称AB相脉冲)方式和正反向脉冲(又称双脉冲)方式,不同工作方式下CP、DIR的含义如表1所示。
单脉冲方式中,CP为脉冲信号,DIR为方向信号;正交脉冲方式中,CP与DIR的相位差为脉冲信号,CP与DIR的相位超前和落后关系决定电动机的旋转方向;正反向脉冲方式中,CP为正转脉冲信号,DIR为反转脉冲信号。
管脚6为OUTA,模拟电压输出,用于模拟式进给轴控制。
脉冲式和模拟式进给轴控制属闭环控制,有反馈,以下是与反馈有关的管脚。
管脚4、5和管脚12、13都是DCSV电源,所不同的是管脚12、13是外围输入给数控系统的电源,而管脚4、5是数控系统提供给编码器的电源。
管脚1、9、2、10、3、11分别为A+、A-、B+、B-、Z+、Z-。管脚1、9和管脚2、10是伺服码盘A、B相位反馈信号,A、B相位差9O。,用于辨向。管脚3、11是伺服码盘Z脉冲反馈信号,用于每转产生一个基准脉冲,又称零脉冲,它是轴旋转一周在固定位置上产生的一个脉冲,在伺服码盘上用于精确确定机床的参考点。
2.XS40~XS43:串行式HSV-l1型伺服轴控制接口。管脚2、3分别为数据接收RXD和数据发送TXD,管脚5为GND地。
(四)主轴控制接口
xS9:主轴控制接口。管脚6、14为主轴模拟量AOUT1、AOUT2,管脚7、8、15为模拟量输出地GND。AOUT1、GND输出-10V +1OV 电压给变频器,来控制主轴转速,而AOUT2、GND则输出0~+10V电压。我们根据实际所需选取相应的管脚。
管脚4、5和管脚12、13都是DC5V电源,所不同的是管脚12、13是外围输入给数控系统的电源,而管脚4、5是数控系统提供给编码器的电源。管脚1、9、2、10、3、l1分别为SA+、SA-、SB+、SB-、SZ+、SZ-。管脚1、9和管脚2、1O是主轴码盘A、B相位反馈信号,A、B相位差90,用于辨向。管脚3、11是主轴码盘z脉冲反馈信号,用于每转产生一个基准脉冲,在主轴码盘上用于螺纹加工以及主轴定向等。
(五)输入输出接口
1.XSIO、XS11:输入开关量接口。每个输入开关量接口有25个管脚。以XS10接口为例,其中管脚3为空,管脚1、2、14、15为24VG,即外部开关量直流24V电源地。管脚13、25、12、24、11、23、10、22、9、21、8、20、7、19、6、18、5、l7、4、16分别为IO~I19,共支持2O个输入点,分别对应输入开关量X0.0~X2.3。同样,XS11接口也支持2O个输入点,分别对应输入开关量X2.4~X4.7。
2.XS20、XS21:输出开关量接口。每个输出开关量接口有25个管脚。以XS20为例,其中管脚5为空,管脚1、2、14、15为24VG,即外部开关量直流24V电源地。管脚3、l6为OTBS1、OTBS2,连接超程解除按钮。管脚4、17为ESTOP1、ESTOP2,连接急停按钮。管脚13、25、12、24、11、23、1O、22、9、21、8、2O、7、19、6、18分别为OO~O15,共支持16个输出点,分别对应输出开关量Y0.0~Y1.7。同样,XS21接口也支持16个输出点,分别对应输出开关量X2.0~ X3.7。
可通过测量管脚4、17,来判断急停按钮通断。也可通过测量3、16,来判断超程解除按钮的通断。这在维修中,在处理急停类和超程类故障时是非常有用的方法。
3.XS6:远程I/O板接口。数控机床结构越复杂、控制功能越多,随之受控对象越多,所需的外部开关量就越多。当XS10、11、2O、21接口不能满足我们的需要时,可使用XS6远程I/O板接口进行扩展。
4.XS8:手持单元接口。手持单元接口共有25个管脚。其中管脚25、13为+5V、5VG,即手摇直流5V 电源。管脚24、12为手摇A相HA和手摇B相HB。这些是手持单元最基本的管脚。
另外,手持单元若带有手持急停按钮和坐标轴选择、增量倍率选择等功能,其管脚这样分配的:管脚1、2、14、15为24VG,管脚3、16为+24V,为开关量提供直流24V 电源;管脚4、l7为ESTOP2、ESTOP3,连接手持单元急停按钮;管脚9、21、8、20、7、19、6、18分别为I32~I39,对应输入开关量X4.0~X4.7;管脚11、23、1O、22分别为028~O31,对应输出开关量Y3.4~Y3.7。
需要注意的是,若手持单元中使用了以上输入、输出开关量管脚,则XS11、XS21接口中相同的开关量管脚就不再使用,以免重复。另外,若手持单元没有急停按钮,则一定要将本接口中的4、17管脚短接,否则系统将处于急停,不能复位。对于数控机床调试、维修人员来说了解并会应用这些都是很重要的。
;
学习数控机床维修技术需要哪些基础
一、电工基础知识
①直流电与电磁的基本知识。
②交流电路的基本知识。
③常用变压器与异步电动机、伺服电机。
④常用低压电器(空气开关、交流接触器、中间继电器、按钮、指示灯等)。
⑤ 数控系统的基础知识。
⑥电工读图的基本知识。
⑦一般数控机床的基本电气控制线路。
二、数控机床基础知识 。
三、数控机床电气基础知识:典型机床电气原理的认识(手动、自动、回零、手轮、MID的各种不同操作方法)、机床机械原理的了解、故障的判断与维修以及数控机床的参数设置。
四、数控系统连接与调试基础知识与PMC编程技术。
五、变频调速技术用及参数的设定。
六、机械基础知识。
没基础怎么学数控机床维修怎么学
应着重培养运行机理的理解能力,机床有问题先从运行机理去推敲哪个子系统有问题,包括程度控制源,动力源、驱动机构,机械传动机构,信号传递及传感器系统等等子系统的问题再动手去检测编修。除了楼上推介的“机床传动结构”之外,个人推介“电工电子技术” ,这是基础入门重要的两类书。之后是机床电气、机床结构、传感器原理、电机拖动技术、单片机原理及接口技术、液压原理这些是各个子系统的书可以顺序的看一遍
还没有评论,来说两句吧...